Quantcast

Codimension-two bifurcation analysis in two-dimensional Hindmarsh–Rose model

Research paper by Xuanliang Liu, Shenquan Liu

Indexed on: 14 Apr '11Published on: 14 Apr '11Published in: Nonlinear dynamics



Abstract

In this paper, we analyze the codimension-2 bifurcations of equilibria of a two-dimensional Hindmarsh–Rose model. By using the bifurcation methods and techniques, we give a rigorous mathematical analysis of Bautin bifurcation. The main result is that no more than two limit cycles can be bifurcated from the equilibrium via Hopf bifurcation; sufficient conditions for the existence of one or two limit cycles are obtained. This paper also shows that the model undergoes a Bogdanov–Takens bifurcation which includes a saddle-node bifurcation, an Andronov–Hopf bifurcation, and a homoclinic bifurcation. In some case, the globally asymptotical stability is discussed.