Cocaine cue versus cocaine dosing in humans: evidence for distinct neurophysiological response profiles.

Research paper by Malcolm S MS Reid, Frank F Flammino, Bryant B Howard, Diana D Nilsen, Leslie S LS Prichep

Indexed on: 05 Aug '08Published on: 05 Aug '08Published in: Pharmacology Biochemistry and Behavior


Subjective, physiological and electroencephalographic (EEG) profiles were studied in cocaine dependent study participants in response to cocaine cue exposure or a dose of smoked cocaine. Both stimuli increased subjective ratings of cocaine high and craving, enhanced negative affect, and boosted plasma ACTH and skin conductance levels. However, cocaine dose produced a greater increase in high and a more prolonged increase in plasma ACTH, while cocaine cue produced a decline in skin temperature. Both stimuli produced increases in absolute theta, alpha and beta EEG power over the prefrontal cortex. However, interhemispheric EEG coherence over the prefrontal cortex decreased during cocaine cue exposure but increased following cocaine dose. Moreover, correlation analysis of subjective, physiological and EEG responding to cocaine cue and dose revealed distinct profiles. Delta and theta activity were associated with negative affect during cocaine cue exposure, but were associated with cocaine craving and reward following cocaine dosing. In both conditions, alpha activity was marker for anxiousness but not high. These data demonstrate similar subjective, physiological responding in clinical laboratory states of cocaine craving and reward. However, differences in EEG response profiles, and their relationship to function, indicate distinct neurophysiological mediators of cocaine craving and reward within the prefrontal cortex.