Coatings, Vol. 9, Pages 4: Comparison of the Optical and Electrical Properties of Al-Doped ZnO Films Using a Lorentz Model

Research paper by Jin-Cherng Hsu, Yu-Yun Chen

Indexed on: 23 Dec '18Published on: 21 Dec '18Published in: Coatings


In this research, zinc oxide (ZnO) films are doped with various amounts of Al dopants, from 0 to 13 at.%, using ion-beam co-sputtering for Zn and Al metallic targets at room temperature. The Al-doped ZnO (AZO) films appear to have lower transmittances in the UV and near-IR ranges. The electrical and optical properties of each film are successfully analyzed by using the spectroscopic ellipsometry of two Lorentz oscillators for the two lower transmittances. The optimal AZO film is deposited with an Al-dopant of 1.5 at.% at an oxygen partial pressure of 0.12 mTorr; it has the smallest resistivity of 7.8 × 10−4 Ω cm and high transmittance of > 80% in the visible regions. The free carrier concentration and mobility evaluated using ellipsometry are different from those measured using the Hall effect. This phenomenon was the result of the grain boundary scattering due to the small ~20-nm grain size of the AZO film used in this study.