Quantcast

Classification and properties of quantum spin liquids on the hyperhoneycomb lattice

Research paper by Biao Huang, Wonjune Choi, Yong Baek Kim, Yuan-Ming Lu

Indexed on: 12 Feb '18Published on: 12 Feb '18Published in: arXiv - Physics - Strongly Correlated Electrons



Abstract

The family of "Kitaev materials" provides an ideal platform to study quantum spin liquids and their neighboring magnetic orders. Motivated by the possibility of a quantum spin liquid ground state in pressurized hyperhoneycomb iridate $\beta$-Li$_2$IrO$_3$, we systematically classify and study symmetric quantum spin liquids on the hyperhoneycomb lattice, using the Abrikosov-fermion representation. Among the 176 symmetric $U(1)$ spin liquids (and 160 $Z_2$ spin liquids), we identify 8 "root" $U(1)$ spin liquids in proximity to the ground state of the solvable Kitave model on hyperhonecyomb lattices. These 8 states are promising candidates for possible $U(1)$ spin liquid ground states in pressurized $\beta$-Li$_2$IrO$_3$. We further discuss physical properties of these 8 $U(1)$ spin liquid candidates, and show that they all support nodal-line-shaped spinon Fermi surfaces.