Quantcast

CIP10 optimization for 4,4-methylene diphenyl diisocyanate aerosol sampling and field comparison with impinger method.

Research paper by Silvia S Puscasu, Simon S Aubin, Yves Y Cloutier, Philippe P Sarazin, Huu V HV Tra, Sébastien S Gagné

Indexed on: 03 Dec '14Published on: 03 Dec '14Published in: The Annals of occupational hygiene



Abstract

4,4-methylene diphenyl diisocyanate (MDI) aerosol exposure evaluation in spray foam insulation application is known as being a challenge because the spray foam application actually involves a fast-curing process. Available techniques are either not user-friendly or are inaccurate or not validated for this application. To address these issues, a new approach using a CIP10M was developed to appropriately collect MDI aerosol in spray foam insulation while being suitable for personal sampling. The CIP10M is a commercially available personal aerosol sampler that has been validated for the collection of microbial spores into a liquid medium. Tributylphosphate with 1-(2-methoxyphenyl)piperazine (MOPIP) was introduced into the CIP10M to collect and stabilize the MDI aerosols. The limit of detection and limit of quantification of the method were 0.007 and 0.024 μg ml(-1), respectively. The dynamic range was from 0.024 to 0.787 μg ml(-1) (with R (2) ≥ 0.990), which corresponds to concentrations in the air from 0.04 to 1.3 µg m(-3), assuming 60 min of sampling at 10 l min(-1). The intraday and interday analytical precisions were <2% for all of the concentration levels tested, and the accuracy was within an appropriate range of 98 ± 1%. No matrix effect was observed, and a total recovery of 99% was obtained. Parallel sampling was performed in a real MDI foam spraying environment with a CIP10M and impingers containing toluene/MOPIP (reference method). The results obtained show that the CIP10M provides levels of MDI monomer in the same range as the impingers, and higher levels of MDI oligomers. The negative bias observed for MDI monomer was between 2 and 26%, whereas the positive bias observed for MDI oligomers was between 76 and 113%, with both biases calculated with a confidence level of 95%. The CIP10M seems to be a promising approach for MDI aerosol exposure evaluation in spray foam applications.