Chronological aging-induced apoptosis in yeast.

Research paper by Paola P Fabrizio, Valter D VD Longo

Indexed on: 01 May '08Published on: 01 May '08Published in: Biochimica et biophysica acta


Saccharomyces cerevisiae is the simplest among the major eukaryotic model organisms for aging and diseases. Longevity in the chronological life span paradigm is measured as the mean and maximum survival period of populations of non-dividing yeast. This paradigm has been used successfully to identify several life-regulatory genes and three evolutionary conserved pro-aging pathways. More recently, Schizosaccharomyces pombe has been shown to age chronologically in a manner that resembles that of S. cerevisiae and that depends on the activity of the homologues of two pro-aging proteins previously identified in the budding yeast. Both yeast show features of apoptotic death during chronological aging. Here, we review some fundamental aspects of the genetics of chronological aging and the overlap between yeast aging and apoptotic processes with particular emphasis on the identification of an aging/death program that favors the dedifferentiation and regrowth of a few better adapted mutants generated within populations of aging S. cerevisiae. We also describe the use of a genome-wide screening technique to gain further insights into the mechanisms of programmed death in populations of chronologically aging S. cerevisiae.