Characterization of signaling pathway for the translocation of neuronal nitric oxide synthase to the plasma membrane by PACAP.

Research paper by Takayuki T Ohnishi, Emiko E Okuda-Ashitaka, Shinji S Matsumura, Tayo T Katano, Mikio M Nishizawa, Seiji S Ito

Indexed on: 03 May '16Published on: 12 Mar '08Published in: Journal of Neurochemistry


In the central nervous system, the activation of neuronal nitric oxide synthase (nNOS) is closely associated with activation of NMDA receptor, and trafficking of nNOS may be a prerequisite for efficient NO production at synapses. We recently demonstrated that pituitary adenylate cyclase activating polypeptide (PACAP) and NMDA synergistically caused the translocation of nNOS to the membrane and stimulated NO production in PC12 (pheochromocytoma) cells. However, the mechanisms responsible for trafficking and activation of nNOS are largely unknown. To address these issues, here we constructed a yellow fluorescent protein (YFP)-tagged nNOS N-terminal (1-299 a.a.) mutant, nNOSNT-YFP, and visualized its translocation in PC12 cells stably expressing it. PACAP enhanced the translocation synergistically with NMDA in a time- and concentration-dependent manner. The translocation was blocked by inhibitors of protein kinase A (PKA), protein kinase C (PKC), and Src kinase; and the effect of PACAP could be replaced with PKA and PKC activators. The beta-finger region in the PSD-95/disc large/zonula occludens-1 domain of nNOS was required for the translocation of nNOS and its interaction with post-synaptic density-95 (PSD-95), and NO formation was attenuated by dominant negative nNOSNT-YFP. These results demonstrate that PACAP stimulated nNOS translocation mediated by PKA and PKC via PAC(1)-receptor (a PACAP receptor) and suggest cross-talk between PACAP and NMDA for nNOS activation by Src-dependent phosphorylation of NMDA receptors.