Quantcast

Characterization of regulatory T cells in obese omental adipose tissue in humans.

Research paper by Dan D Wu, Jonathan M JM Han, Xin X Yu, Avery J AJ Lam, Romy E RE Hoeppli, Anne M AM Pesenacker, Qing Q Huang, Virginia V Chen, Cate C Speake, Ekua E Yorke, Nam N Nguyen, Sharadh S Sampath, David D Harris, Megan K MK Levings

Indexed on: 20 Dec '18Published on: 20 Dec '18Published in: European Journal of Immunology



Abstract

Obesity-associated visceral adipose tissue (AT) inflammation promotes insulin resistance and type 2 diabetes (T2D). In mice, lean visceral AT is populated with anti-inflammatory cells, notably regulatory T cells (Tregs) expressing the IL-33 receptor ST2. Conversely, obese AT contains fewer Tregs and more pro-inflammatory cells. In humans, however, there is limited evidence for a similar pattern of obesity-associated immunomodulation. We used flow cytometry and mRNA quantification to characterize human omental AT in 29 obese, 18 of whom had T2D. Patients with T2D had increased proportions of inflammatory cells, including M1 macrophages, with positive correlations to body mass index. In contrast, Treg frequencies negatively correlated to BMI but were comparable between T2D and non-T2D individuals. Compared to human thymic Tregs, omental AT Tregs expressed similar levels of FOXP3, CD25, IKZF2, and CTLA4, but higher levels of PPARG, CCR4, PRDM1, and CXCL2. ST2, however was not detectable on omental AT Tregs from lean or obese subjects. This is the first comprehensive investigation into how omental AT immunity changes with obesity and T2D in humans, revealing important similarities and differences to paradigms in mice. These data increase our understanding of how pathways of immune regulation could be targeted to ameliorate AT inflammation in humans. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

More like this: