Quantcast

Characterization of protein kinases from adrenal medulla

Research paper by R. A. Hollenbeck, D. M. Chuang, E. Costa

Indexed on: 01 Feb '78Published on: 01 Feb '78Published in: Neurochemical Research



Abstract

Since phosphorylation of chromosomal proteins by cyclic AMP-dependent protein kinases (EC 2.7.1.37) enhances template activity of adrenal medulla chromatin (9), we have studied the properties and regulation of protein kinases isolated from chromaffin cell cytosol and nuclei. DEAE-cellulose chromatography revealed three peaks of kinase activity in the nucleus (nPKI, nPKII, nPKIII) and two in the cytosol (cPKI, cPKII). The three nuclear enzymes, as well as cPKII, did not require cyclic AMP to express their catalytic activity, nPKI and nPKIII preferred acidic substrates as PO43− acceptors, while nPKII and the cytosol enzymes preferred basic PO43− acceptors. Enzyme recombination experiments using protein kinase regulatory subunits from cytosol suggested that cPKII was the catalytic subunit of cPKI. In contrast, the nuclear enzymes were not catalytic subunits of the cyclic AMP-dependent protein kinase in the cytosol (cPKI). Only the cytosol protein kinases could be inhibited by endogenous heat-stable protein kinase inhibitors. The nuclear and cytosol cyclic AMP-independent protein kinases were distinguishable on the basis of their sedimentation constants as well as Mg2+ and Mn2+ requirements.