Quantcast

Characterization of myelin ligand complexes with neuronal Nogo-66 receptor family members.

Research paper by Juha J Laurén, Fenghua F Hu, Joanna J Chin, Ji J Liao, Matti S MS Airaksinen, Stephen M SM Strittmatter

Indexed on: 26 Dec '06Published on: 26 Dec '06Published in: Journal of Biological Chemistry



Abstract

Nogo, MAG, and OMgp are myelin-associated proteins that bind to a neuronal Nogo-66 receptor (NgR/NgR1) to limit axonal regeneration after central nervous system injury. Within Nogo-A, two separate domains are known interact with NgR1. NgR1 is the founding member of the three-member NgR family, whereas Nogo-A (RTN4A) belongs to a four-member reticulon family. Here, we systematically mapped the interactions between these superfamilies, demonstrating novel nanomolar interactions of RTN2 and RTN3 with NgR1. Because RTN3 is expressed in spinal cord white matter, it may have a role in myelin inhibition of axonal growth. Further analysis of the Nogo-A and NgR1 interactions revealed a novel third interaction site between the proteins, suggesting a trivalent Nogo-A interaction with NgR1. We also confirmed here that MAG binds to NgR2, but not to NgR3. Unexpectedly, we found that OMgp interacts with MAG with a higher affinity compared with NgR1. To better define how these multiple structurally distinct ligands bind to NgR1, we examined a series of Ala-substituted NgR1 mutants for ligand binding activity. We found that the core of the binding domain is centered in the middle of the concave surface of the NgR1 leucine-rich repeat domain and surrounded by differentially utilized residues. This detailed knowledge of the molecular interactions between NgR1 and its ligands is imperative when assessing options for development of NgR1-based therapeutics for central nervous system injuries.

More like this: