Quantcast

Cannon-Thurston Maps for Kleinian Groups

Research paper by Mahan Mj

Indexed on: 07 Jun '11Published on: 07 Jun '11Published in: Mathematics - Geometric Topology



Abstract

We show that Cannon-Thurston maps exist for degenerate free groups without parabolics, i.e. for handlebody groups. Combining these techniques with earlier work proving the existence of Cannon-Thurston maps for surface groups, we show that Cannon-Thurston maps exist for arbitrary finitely generated Kleinian groups, proving a conjecture of McMullen. We also show that point pre-images under Cannon-Thurston maps for degenerate free groups without parabolics correspond to end-points of leaves of an ending lamination in the Masur domain, whenever a point has more than one pre-image. This proves a conjecture of Otal. We also prove a similar result for point pre-images under Cannon-Thurston maps for arbitrary finitely generated Kleinian groups.