Quantcast

Cancellous Screws Are Biomechanically Superior to Cortical Screws in Metaphyseal Bone.

Research paper by Tim T Wang, Christopher C Boone, Anthony W AW Behn, Justin B JB Ledesma, Julius A JA Bishop

Indexed on: 14 May '16Published on: 14 May '16Published in: Orthopedics



Abstract

Cancellous screws are designed to optimize fixation in metaphyseal bone environments; however, certain clinical situations may require the substitution of cortical screws for use in cancellous bone, such as anatomic constraints, fragment size, or available instrumentation. This study compares the biomechanical properties of commercially available cortical and cancellous screw designs in a synthetic model representing various bone densities. Commercially available, fully threaded, 4.0-mm outer-diameter cortical and cancellous screws were tested in terms of pullout strength and maximum insertion torque in standard-density and osteoporotic cancellous bone models. Pullout strength and maximum insertion torque were both found to be greater for cancellous screws than cortical screws in all synthetic densities tested. The magnitude of difference in pullout strength between cortical and cancellous screws increased with decreasing synthetic bone density. Screw displacement prior to failure and total energy absorbed during pullout strength testing were also significantly greater for cancellous screws in osteoporotic models. Stiffness was greater for cancellous screws in standard and osteoporotic models. Cancellous screws have biomechanical advantages over cortical screws when used in metaphyseal bone, implying the ability to both achieve greater compression and resist displacement at the screw-plate interface. Surgeons should preferentially use cancellous over cortical screws in metaphyseal environments where cortical bone is insufficient for fixation. [Orthopedics.].