Quantcast

C-jun N-terminal kinase regulates the interaction between 14-3-3 and Bad in ethanol-induced cell death.

Research paper by Jae Yoon JY Han, Eun Young EY Jeong, Yoon Sook YS Kim, Gu Seob GS Roh, Hyun Joon HJ Kim, Sang Soo SS Kang, Gyeong Jae GJ Cho, Wan Sung WS Choi

Indexed on: 04 Jun '08Published on: 04 Jun '08Published in: Journal of Neuroscience Research



Abstract

Activation of the c-jun N-terminal kinase (JNK) is known to be an important step during ethanol-induced cell death, but it has yet to be identified how JNK regulates apoptosis. Therefore, we investigated the mechanism by which JNK induces cell death following ethanol treatment. Ethanol (6 g/kg, 20% in saline) was administered subcutaneously to postnatal 7 day rat pups. Twelve hours after the first ethanol administration, rat pups were decapitated, and extracts of total protein from cerebral cortices were prepared. Ethanol exposure induced phosphorylation of JNK but did not affect the expression levels of pro- and antiapoptotic proteins. Furthermore, interactions of phospho-JNK (p-JNK) with 14-3-3 as well as with Bad were enhanced in the cerebral cortices of ethanol-treated rats. Pretreatment with JNK inhibitor (SP600125) of SH-SY5Y cells inhibited JNK phosphorylation and interaction between p-JNK and 14-3-3 resulting from ethanol. Furthermore, 14-3-3 interaction with Bad was diminished in the cerebral cortices of ethanol-treated rats. These findings suggest that JNK induces Bad release from 14-3-3 by inhibiting their interaction. After this event, Bad binds to Bcl-xL, releasing Bax from Bcl-xL and leading to cell death. We hypothesize that JNK may play an important role during ethanol-induced cell death via the inhibition of antiapoptotic function of 14-3-3 as well as activation of proapoptotic function of Bad.