# Boundedness of Hardy-type operators with a kernel: integral weighted
conditions for the case $0

Research paper by **Martin Křepela**

Indexed on: **02 Feb '16**Published on: **02 Feb '16**Published in: **Mathematics - Functional Analysis**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

Let $U:[0,\infty)^2 \to [0,\infty)$ be a~measurable kernel satisfying:
(i) $U(x,y)$ is nonincreasing in $x$ and nondecreasing in $y$;
(ii) there exists a~constant $\theta>0$ such that $U(x,z) \le \theta\left(
U(x,y)+U(y,z) \right)$ for all $0\le x<y<z<\infty$;
(iii) $U(0,y)>0$ for all $y>0$.
Let $0<q<1< p <\infty$. We prove that the weighted inequality \[ \left(
\int_0^\infty \left( \int_0^t f(x)U(x,t) dx \right)^q w(t) dt \right)^\frac 1q
\le C \left( \int_0^\infty f^p(t)v(t)dt \right)^\frac 1p \] holds for all
nonnegative measurable functions $f$ on $(0,\infty)$ if and only if \[ \left(
\int_0^\infty \left( \int_t^\infty w(x)dx \right)^\frac{r}{p} w(t) \left(
\int_0^t U^{p'}(z,t)v^{1-p'}(z) dy \right)^\frac{r}{p'} dt \right)^\frac 1r
<\infty \] and \[ \left( \int_0^\infty \left( \int_t^\infty w(x) U^q(t,x) dx
\right)^\frac{r}{p} w(t) \sup_{z\in(0,t)} U^q(z,t)\left( \int_0^z v^{1-p'}(s)
ds \right)^\frac{r}{p'} dt \right)^\frac 1r <\infty, \] where
$p':=\frac{p}{p-1}$ and $r:=\frac{pq}{p-q}$. Analogous conditions for the case
$p=1$ and for the dual version of the inequality are also presented.