Quantcast

Blind quantum computation with noise environment

Research paper by Yu-Bo Sheng, Lan Zhou

Indexed on: 28 Sep '16Published on: 28 Sep '16Published in: arXiv - Quantum Physics



Abstract

Blind quantum computation (BQC) is a new type of quantum computation model. BQC allows a client (Alice) who does not have enough sophisticated technology and knowledge to perform universal quantum computation and resorts a remote quantum computation server (Bob) to delegate universal quantum computation. During the computation, Bob cannot know Alice's inputs, algorithm and outputs. In single-server BQC protocol, it requires Alice to prepare and distribute single-photon states to Bob. Unfortunately, the distributed single photons will suffer from noise, which not only makes the single-photon state decoherence, but also makes it loss. In this protocol, we describe an anti-noise BQC protocol, which combined the ideas of faithful distribution of single-photon state in collective noise, the feasible quantum nondemolition measurement and Broadbent-Fitzsimons-Kashefi (BFK) protocol. This protocol has several advantages. First, Alice does not require any auxiliary resources, which reduces the client's economic cost. Second, this protocol not only can protect the state from the collective noise, but also can distill the single photon from photon loss. Third, the noise setup in Bob is based on the linear optics, and it is also feasible in experiment. This anti-noise BQC may show that it is possible to perform the BQC protocol in a noisy environment.