Biodegradation of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in wastewater and soil under high salinity conditions.

Research paper by Yuan Y Gong, Peng P Ding, Ming-Jie MJ Xu, Chun-Mei CM Zhang, Ke K Xing, Sheng S Qin

Indexed on: 11 Apr '21Published on: 10 Apr '21Published in: Journal of Environmental Management


In this study, a novel halotolerant phenol-degrading yeast strain, SDP-1, was isolated from a coastal soil in Jiangsu, China, and identified as Candida tropicalis by morphology and rRNA internal transcribed space region sequence analysis. Strain SDP-1 can efficiently remove phenol at wide ranges of pH (3.0-9.0), temperature (20-40 °C), and NaCl (0-5%, w/v), as well as the tolerance of Mn, Zn and Cr in aquatic phase. It also utilized multiple phenol derivatives and aromatic hydrocarbons as sole carbon source and energy for growth. Free cells of SDP-1 were able to degrade the maximum phenol concentration of 1800 mg/L within 56 h under the optimum culture conditions of 10% inoculum volume, pH 8.0, 35 °C and 200 rpm agitation speed. Meanwhile, SDP-1 was immobilized on sodium alginate, and the capability of efficiently phenol degradation of free cells and immobilized SDP-1 were evaluated. Shortened degradation time and long-term utilization and recycling for immobilized SDP-1 was achieved compared to free cells. The 1200 mg/L of phenol under 5% NaCl stress could be completely degraded within 40 h by immobilized cells. In actual industrial coking wastewater, immobilized cells were able to completely remove 383 mg/L phenol within 20 h, and the corresponding chemical oxygen demand (COD) value was decreased by 50.38%. Besides, in phenol-contained salinity soil (3% NaCl), 100% of phenol (500 and 1000 mg/kg) removal efficiency was achieved by immobilized SDP-1 within 12 and 26 days, respectively. Our study suggested that versatile yeast Candida tropicalis SDP-1 could be potentially used for enhanced treatment of phenol-contaminated wastewater and soil under hypersaline or no-salt environmental conditions. Copyright © 2021 Elsevier Ltd. All rights reserved.