Quantcast

Automated Detection Of Eit Waves And Dimmings

Research paper by Olena Podladchikova, David Berghmans

Indexed on: 01 May '05Published on: 01 May '05Published in: Solar Physics



Abstract

Studies of the onset of Earth-directed coronal mass ejections (CMEs) rely on solar disk observations where CME structures are difficult to disentangle because of the diversity and transient character of the phenomena involved. Dimmings and coronal waves are among the best evidence of the large-scale reorganization of coronal magnetic fields associated with the onset of CMEs. The physical mechanism behind EIT waves is still unclear: they are considered as MHD waves and/or as a consequence of plasma compression on the extending border of a dimming. In this paper, we address the problem of automatically detecting and analyzing EIT waves and dimmings in EUV images. This paper presents a “proof of principle” that automated detection of EIT wave and dimmings is indeed possible. At the current stage of work, the method can unambiguously detect dimmings and EIT waves when applied on a typical test-case event. Moreover, we propose a way to extract these events from the data, and determine such parameters as life time, depth, area and volume of dimmings for future catalogs. For EIT waves we unambiguously define, in near solar minimum conditions, the eruption center, the front of EIT wave and its propagation velocity. In addition, we show that the presented methods yield new insights about the geometrical shape of dimmings and the connection with the EIT wave front properties, and the apparent angular rotation of the EIT wave under study.