Quantcast

Apparatus and method for driving a plasma display panel

Imported: 13 Feb '17 | Published: 18 Jan '11

Jun-Young Lee, Dae-Gyu Kim

USPTO - Utility Patents

Abstract

An apparatus for driving a plasma display panel includes a first driver and a second driver and a first power supplier and a second power supplier for generating sustain discharge pulses having no negative (−) level. The first driver includes a first capacitor charged to a first voltage and is coupled to a power source for supplying a voltage Vs and a ground voltage. The first driver, coupled to one terminal of a panel capacitor, operates to alternately apply double the voltage Vs formed by the power source and the first capacitor and the ground voltage to the one terminal of the panel capacitor. The second power supplier, coupled to the power source and the ground voltage, includes a second capacitor charged to Vs. The second driver coupled to the other terminal of the panel capacitor operates to alternately apply double the voltage Vs formed by the power source and the second capacitor and the ground voltage to the other terminal of the panel capacitor. Here, one of the first driver and the second driver applies the ground voltage to the panel capacitor, while the other applies double the voltage Vs to the panel capacitor.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of prior application Ser. No. 10/393,022, filed on Mar. 21, 2003, which claims priority to and the benefit of Korean Patent Application No. 2002-0020398, filed on Apr. 15, 2002, which are all hereby incorporated by reference for all purposes as if fully set forth herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an apparatus and method for driving a plasma display panel. More specifically, the present invention relates to a sustain discharge circuit for plasma display panels.

2. Description of the Related Art

A plasma display panel (PDP) is a flat panel display that uses plasma generated by gas discharge to display characters or images. The PDP includes, according to its size, more than several scores to millions of pixels arranged in a matrix pattern. Such a PDP is classified as a direct current (DC) type or an alternating current (AC) type according to its discharge cell structure and the waveform of the driving voltage applied thereto.

The DC PDP has electrodes exposed to a discharge space to allow DC to flow through the discharge space while voltage is applied, and thus requires a certain resistance for limiting the current. Contrarily, the AC PDP has electrodes covered with a dielectric layer that naturally forms a capacitance component to limit the current and to protect the electrodes from the impact of ions during a discharge, and has longevity superior to the DC PDP.

A driving method of the AC PDP includes a reset step, an addressing step, a sustain discharge step, and an erase step.

In the reset step, each cell is initialized to be ready to perform an addressing operation on the cell. In the addressing step, wall charges are formed on selected “on”-state cells (i.e., addressed cells) in the panel. In the sustain step, a discharge occurs to actually display an image on the addressed cells. In the erase step, the wall charges on the cells are erased to end the sustain discharge.

In the AC PDP, the scan and sustain electrodes for sustain discharge act as a capacitative load to form a capacitance between the scan and sustain electrodes, which is equivalently denoted as a “panel capacitor” hereinafter. Kishi et al. suggested a circuit (Japanese Patent No. 3,201,603) that applies a waveform for a sustain discharge on the scan and sustain electrodes.

In conventional circuits, however, a sustain discharge pulse swinging between positive (+) voltage Vs and negative (−) voltage −Vs is applied to the scan and sustain electrodes. With the sustain discharge pulse applied to the scan electrode and the sustain electrode for phase inversion of each other, the potential difference between the scan electrode and the sustain electrode reaches a voltage of 2Vs required for a sustain discharge. Individual elements used in this circuit must have a withstand voltage of Vs, so that any element having a low withstand voltage can be used. Such a conventional circuit, however, uses a pulse swinging from −Vs to Vs, and it cannot be used for a plasma display panel that uses a sustain discharge pulse with no negative (−) voltage.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a PDP driver circuit using no negative (−) voltage.

It is another object of the present invention to use a switch having a low withstand voltage.

In order to achieve such objects, an apparatus for driving a PDP includes a plurality of address electrodes, a plurality of scan electrodes and sustain electrodes alternately arranged in pairs, and a panel capacitor formed among the address, scan and sustain electrodes. The driving apparatus comprises a first driver and a second driver, and a first power supplier and a second power supplier.

The apparatus has a capacitor that stores a half voltage level of the sustain voltage. When applying a voltage to one electrode of the panel capacitor, a source voltage that is serially connected to the capacitor is connected to the electrode of the panel capacitors. This forms a circuit path between the source voltage, the capacitor and the electrode of the panel capacitor. Therefore, the summation of the source voltage and the capacitor-stored voltage is applied to the electrode of the panel capacitor.

The other electrode of the panel capacitor is also connected to the same circuitry including a source voltage and a capacitor. A same configuration of circuit is formed when the voltage needs to be applied to the other electrode of the panel capacitor.

The voltages are alternately applied to each electrode of the panel capacitor in this manner. This allows the manufacturer to use a low voltage device in its component, which reduces the costs.

The apparatus may also include a voltage recovery circuit. By including an inductor and a switching device in the circuitry, the apparatus may recover the energy used in the previous discharge phase.

A method for driving such device is also disclosed.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following detailed description, only the preferred embodiment of the invention has been shown and described, simply by way of illustrating the best mode contemplated by the inventor(s) of carrying out the invention. As will be realized, the invention is capable of modification in various obvious respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not restrictive. In the figures, some parts not related to the description are omitted for a better understanding of the present invention, and the same reference numerals are assigned to the same parts throughout.

FIG. 1 is an illustration of a PDP according to an embodiment of the present invention.

The PDP according to the embodiment of the present invention comprises a plasma panel 100, an address driver 200, a scan/sustain driver 300, and a controller 400.

The plasma panel 100 comprises a plurality of address electrodes A1 to Am arranged in rows, and a plurality of scan electrodes (hereinafter referred to as “Y electrodes”) Y1 to Yn and sustain electrodes (hereinafter referred to as “X electrodes”) X1 to Xn alternately arranged in columns. The Y electrodes Y1 to Yn are formed in correspondence with the X electrodes to be alternately arranged in pairs. When the controller 400 receives an external image signal, it generates an address drive control signal and a sustain discharge signal, and applies them to the address driver 200 and the scan/sustain driver 300, respectively.

The address driver 200 receives the address drive control signal from the controller 400 and applies a display data signal, for selection of discharge cells to be displayed, to the individual address electrodes. The scan/sustain driver 300 receives the sustain discharge signal from the controller 400 and applies a sustain discharge pulse alternately to the X and Y electrodes. The applied sustain discharge pulse causes a sustain discharge on the selected discharge cells.

Below is a description of a driver circuit of the scan/sustain driver 300 according to a first embodiment of the present invention with reference to FIGS. 2 to 4.

FIG. 2 is a circuit diagram of the driver circuit 300 according to the first embodiment of the present invention, FIGS. 3A and 3B are illustrations showing the current paths in the respective modes for the driver circuit according to the first embodiment of the present invention, and FIG. 4 is a timing diagram of the driver circuit 300 according to the first embodiment of the present invention.

The driver circuit 300 according to the first embodiment of the present invention comprises, as shown in FIG. 2, a Y electrode driver 310, an X electrode driver 320, a Y electrode power supplier 330, and an X electrode power supplier 340.

The Y electrode driver 310 and the X electrode driver 320 are connected to each other with a panel capacitor Cp therebetween. The Y electrode driver 310 comprises switches Yh and YL coupled in parallel to one terminal of the panel capacitor Cp, while the X electrode driver 320 comprises switches Xh and XL coupled in parallel to the other terminal of the panel capacitor Cp.

The Y electrode power supplier 330 comprises a capacitor C1, a diode D1, and switches Ys and Yg. The switches Ys and Yg are coupled in series between a power source Vs and a ground terminal 0, and the contact between the switches Ys and Yg is coupled to the switch YL of the Y electrode driver 310. The diode D1 is coupled between the power source Vs and the switch Yh of the Y electrode driver 310, and the contact between the diode D1 and the switch Yh is coupled to the other terminal of the capacitor C1. Therefore, the switches Yh and YL are coupled in series to both terminals of the capacitor C1.

The X electrode power supplier 340 comprises a capacitor C2, a diode D2, and switches Xs and Xg. The structure of the X electrode power supplier 340 is readily understandable with reference to the structure of the Y electrode power supplier 330 and FIG. 2, and will not be further described.

Although the switches Yh, YL, Xh, XL, Ys, Yg, Xs, and Xg are represented as a MOSFET in FIG. 2, they are not specifically limited to MOSFET and may include any switches that perform the same or similar functions. Preferably, the switches have a body diode such as a PN junction separation structure of a semiconductor integrated circuit.

Below is a description of an operation of the driver circuit according to the first embodiment of the present invention with reference to FIGS. 3A, 3B, and 4. Here, the operation changes in two modes, which are switched by manipulation of the switches Yh, XL, Xh, and YL. It is assumed that the capacitors C1 and C2 are charged to the voltage Vs.

First, with the switches Xs, Xh, Yg, and YL off, the switches Ys, Yh, Xg, and XL are turned on to form a current path 31.

When the switches Ys and Yh are turned on, the voltage of the power source Vs and the voltage Vs charged on the capacitor C1 are applied to the Y electrodes of the panel capacitor Cp by the current path of power source Vs, switch Ys, capacitor C1, and switch Yh. The applied voltage makes a Y electrode voltage Vy of the panel capacitor Cp reach 2Vs. Also, an X electrode voltage Vx of the panel capacitor Cp reaches the ground voltage 0V by a current path of switch XL and Xg.

In addition, the capacitor C2 is continuously charged to the voltage Vs by a current path 32 of power source Vs, diode D2, capacitor C2, switch Xg, and ground terminal 0.

Subsequently, the switches Ys, Yh, Xg, and XL are turned off and the switches Xs, Xh, Yg, and YL are turned on, to form a current path 33.

When the switches Xs and Xh are turned on, the voltage of the power source Vs and the voltage Vs charged on the capacitor C2 are applied to the X electrodes of the panel capacitor Cp by the current path of power source Vs, switch Xs, capacitor C2, and switch Xh. The applied voltage makes the X electrode voltage Vx of the panel capacitor Cp reach 2Vs. Also, the Y electrode voltage Vy of the panel capacitor Cp reaches the ground voltage 0V by a current path of switches YL and Yg.

In addition, capacitor C1 is charged to the voltage Vs by a current path 34 of power source Vs, diode D1, capacitor C1, switch Yg, and ground terminal 0.

According to the first embodiment of the present invention, as described above, the potential difference between the X and Y electrodes can be a sustain discharge voltage 2Vs by generating a sustain discharge pulse swinging from zero to 2Vs.

The driver circuit 300 according to the first embodiment of the present invention may include a power recovery circuit for recovering reactive power and reusing it. Below is a description of an embodiment with the addition of a power recovery circuit, with reference to FIGS. 5 to 7.

FIG. 5 is a circuit diagram of the driver circuit according to a second embodiment of the present invention, FIGS. 6A to 6H are illustrations showing the current paths in the respective modes for the driver circuit according to the second embodiment of the present invention, and FIG. 7 is a timing diagram of the driver circuit according to the second embodiment of the present invention.

The driver circuit 300 according to the second embodiment of the present invention comprises, as shown in FIG. 5, Y electrode power recovery section 350 and X electrode power recovery section 360 added to the driver circuit of the first embodiment of the present invention.

The Y electrode power recovery section 350 comprises an inductor L1 and switches Yr and Yf. The inductor L1 has one terminal coupled to a contact between the switches Yh and YL, i.e., the Y electrode of the panel capacitor Cp. The switches Yr and Yf are coupled in parallel between the other terminal of the inductor L1 and the power source Vs. The Y electrode power recovery section 350 may further comprise diodes D3 and D4 coupled between the switches Yr and Yf and the inductor L1, respectively. The diodes D3 and D4 form a current path to the inductor L1 and a current path from the inductor L1.

The X electrode power recovery section 360 comprises an inductor L2 and switches Xr and Xf, and further diodes D5 and D6. The structure of the X electrode power recovery section 360 is the same as that of the Y electrode power recovery section 350 and will not be further described. The switches Yr, Yf, Xr, and Xf may comprise MOSFETs.

Below is a description of an operation of the driver circuit according to the second embodiment of the present invention with reference to FIGS. 6A through 6H and 7. Here, the operation changes in eight modes, which are switched by manipulation of switches. The phenomenon called “LC resonance” herein, is not a continuous oscillation but a change in voltage and current caused by the combination of the inductors L1 and L2 and the panel capacitor Cp when the switches Yr, Xf, Xr, and Yf are turned on.

In the second embodiment of the present invention, it is assumed that before the start of Mode 1, the switches Xs, Xh, Yg, and YL are in the “on” position, with the switches Ys, Yh, Xg, XL, Yf, Xr, Yr, and Xf off. It is also assumed that the capacitors C1 and C2 are charged to a voltage of Vs and that the inductance of the inductors L1 and L2 is L.

1) Mode 1 (t0 to t1)

Reference will be made to FIG. 6A and the t0-t1 interval of FIG. 7 to describe the operation in Mode 1.

Before the start of Mode 1, the capacitor C1 is charged to a voltage of Vs by a current path including power source Vs, diode D1, capacitor C1, and switch Yg. Also, a current path 62 is formed that includes power source Vs, switch Xs, capacitor C2, switch Xh, panel capacitor Cp, switch YL, switch Yg, and ground voltage. Then, due to the power source Vs and the voltage of Vs charged on the capacitor C2, the X electrode voltage Vx of the panel capacitor Cp is sustained at 2Vs. As the Y electrode is coupled to the ground voltage, the Y electrode voltage Vy is sustained at 0V.

Here, turning on the switches Yr and Xf forms current paths 63 and 64. The current path 63 includes power source Vs, switch Yr, diode D3, inductor L1, switch YL, switch Yg, and ground voltage. A current path 64 includes power source Vs, switch Xs, capacitor C2, switch Xh, inductor L2, diode D6, switch Xf, and power source Vs. By the current paths 63 and 64, currents IL1 and IL2 flowing to the inductors L1 and L2 linearly increase with a slope of Vs/L and (2Vs−Vs)/L(=Vs/L), respectively. Hence the energy is stored in the inductors L1 and L2 due to the currents IL1 and IL2.

(2) Mode 2 (t1 to t2)

Reference will be made to FIG. 6B and the t1-t2 interval of FIG. 7 to describe the operation in Mode 2.

In Mode 2, with the switches Yr and Xf on, the switches Xs, Xh, Yg, and YL are turned off. Then, a current path 65 is formed that includes power source Vs, switch Yr, diode D3, inductor L1, panel capacitor Cp, inductor L2, diode D6, switch Xf, and power source Vs, so that an LC resonance current flows due to the inductors L1 and L2 and the panel capacitor Cp. With this LC resonance current, the Y electrode voltage Vy of the panel capacitor Cp is increased to 2Vs, and the X electrode voltage Vx is reduced to 0V. Therefore, the energy stored in the inductors L1 and L2 is used to change the Y and X electrode voltages of the panel capacitor Cp.

(3) Mode 3 (t2˜t3)

Reference will be made to FIG. 6C and the t2-t3 interval of FIG. 7 to describe the operation in Mode 3.

In Mode 3, with the switches Yr and Xf on, the switches Ys, Yh, Xg, and XL are turned on. A current path 66 is then formed that includes power source Vs, switch Ys, capacitor C1, switch Yh, panel capacitor Cp, switch XL, switch Xg, and ground voltage. Due to the power source Vs and the voltage of Vs charged on the capacitor C1, the Y electrode voltage Vy of the panel capacitor Cp is sustained at 2Vs. As the X electrode is coupled to the ground voltage, the X electrode voltage Vx is sustained at 0V.

A current path 67 is formed that includes power source Vs, switch Yr, diode D3, inductor L1, the body diode of switch Yh, capacitor C1, the body diode of switch Ys, and power source Vs. Also, a current path 68 is formed that includes ground voltage, the body diode of switch Xg, the body diode of switch XL, inductor L2, diode D6, switch Xf, and power source Vs. By the current paths 67 and 68, currents flowing to the inductors L1 and L2 linearly decrease to zero with a slope of (Vs−2Vs)/L and (0−Vs)/L, i.e., −Vs/L, respectively. Hence the energy stored in the inductors L1 and L2 is recovered to the power source Vs.

In addition, a current path 69 is formed that includes another power source Vs, diode D2, capacitor C2, switch Xg, and ground voltage, thereby charging a voltage of Vs on the capacitor C2.

(4) Mode 4 (t3˜t4)

Reference will be made to FIG. 6D and the t3-t4 interval of FIG. 7 to describe the operation in Mode 4.

In Mode 4, with the switches Ys, Yh, Xg, and XL on, the switches Yr and Xf are turned off. By the current path 66 formed in Mode 3, the Y and X electrode voltages Vy and Vx of the panel capacitor Cp are still sustained at 2Vs and 0V, respectively. The capacitor C2 is continuously charged to the voltage of Vs by the current path 69 formed in Mode 3.

(5) Mode 5 (t4˜t5)

Reference will be made to FIG. 6E and the t4-t5 interval of FIG. 7 to describe the operation in Mode 5.

In Mode 5, with the switches Ys, Yh, Xg, and XL on, the switches Yf and Xr are turned on. By the current paths 66 and 69 formed in Mode 3, the Y and X electrode voltages Vy and Vx of the panel capacitor Cp are sustained at 2Vs and 0V, respectively, and the capacitor C2 is still charged to the voltage of Vs.

With the switches Yf and Xr on, a current path 70 is formed that includes power source Vs, switch Ys, capacitor C1, switch Yh, inductor L1, diode D4, switch Yf, and power source Vs, and a current path 71 is formed that includes power source Vs, switch Xr, diode D5, inductor L2, switch XL, switch Xg, and ground voltage. By the current paths 70 and 71, the currents IL1 and IL2 flowing to the inductors L1 and L2 are linearly decreased from zero with a slope of (2Vs−Vs)/L and (Vs−0)/L, i.e., Vs/L, respectively (these currents are opposite in direction to those in Mode 1 and are denoted as a negative (−) value in FIG. 7). Hence the energy is stored in the inductors L1 and L2.

(6) Mode 6 (t5 to t6)

Reference will be made to FIG. 6F and the t5-t6 interval of FIG. 7 to describe the operation in Mode 6.

In Mode 6, with the switches Yf and Xr on, the switches Ys, Yh, Xg, and XL are turned off. The current paths 66, 69, 70, and 71 formed in Mode 5 are then stopped, to form a current path 72 that includes power source Vs, switch Xr, diode D5, inductor L2, panel capacitor Cp, inductor L1, diode D4, switch Yf, and power source Vs. The current path 72 makes an LC resonance current flow due to the inductors L1 and L2 and the panel capacitor Cp. With this LC resonance current, the Y electrode voltage Vy of the panel capacitor Cp decreases to zero and the X electrode voltage Vx increases to 2Vs. That is, the energy stored in the inductors L1 and L2 is used to change the Y and X electrode voltages of the panel capacitor Cp.

(7) Mode 7 (t6˜t7)

Reference will be made to FIG. 6G and the t6-t7 interval of FIG. 7 to describe the operation in Mode 7.

In Mode 7, with the switches Yf and Xr on, the switches Xs, Xh, Yg, and YL are turned on. A current path 73 is then formed that includes power source Vs, switch Xs, capacitor C2, switch Xh, panel capacitor Cp, switch YL, switch Yg, and ground voltage. This sustains the Y and X electrode voltages Vy and Vx of the panel capacitor Cp at 0V and 2Vs, respectively.

Then, a current path 74 is formed that includes ground voltage, the body diode of switch Yg, the body diode of switch YL, inductor L1, diode D4, switch Yf, and power source Vs, and a current path 75 is formed that includes power source Vs, switch Xr, diode D5, inductor L2, the body diode of switch Xh, capacitor C2, the body diode of switch Xs, and power source Vs. By the current paths 74 and 75, currents flowing to the inductors L1 and L2 linearly decrease to zero with a slope of −Vs/L (these currents are opposite in direction to those in Mode 3 and are denoted as a negative (−) value in FIG. 7). Therefore, the energy stored in the inductors L1 and L2 is recovered to the power source Vs.

In addition, a current path 76 is formed that includes power source Vs, diode D1, capacitor C1, switch Yg, and ground voltage, thereby charging a voltage of Vs on the capacitor C1.

(8) Mode 8 (t7˜t8)

Reference will be made to FIG. 6H and the t7-t8 interval of FIG. 7 to describe the operation in Mode 8.

In Mode 8, with the switches Xs, Xh, Yg, and YL on, the switches Yf and Xr are turned off. By the current path 73 formed in Mode 7, the Y and X electrode voltages Vy and Vx of the panel capacitor Cp are still sustained at 0V and 2Vs, respectively. The capacitor C1 is continuously charged to the voltage of Vs by the current path 76 formed in Mode 7.

Subsequently, the cycle of Modes 1 to 8 is repeated to generate a sustain discharge pulse having no negative (−) level, thereby providing a potential difference between the X and Y electrodes as a sustain discharge voltage of 2Vs.

Although each of the Y electrode power recovery sections 350 and X electrode power recovery section 360 has one inductor in the second embodiment of the present invention, other differently modified power recovery sections may be used. For example, the Y electrode power recovery section 350 may include inductors L11 and L12, each forming a different path. That is, energy is stored in the inductor L11 while the Y electrode voltage is sustained at 2Vs, and it is then used to change the Y electrode voltage to 0V. The energy stored in the inductor L12 is recovered while the Y electrode voltage is sustained at 0V, and energy is stored in the inductor L12 and then used to change the Y electrode voltage to 2Vs.

As described above, according to the present invention, only the power source Vs supplying a voltage of Vs is used to generate a sustain discharge pulse swinging from 0V to 2Vs, thereby making it possible to use conventional switches having a low withstand voltage and to generate a sustain discharge pulse having no negative (−) level.

While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims

1. A method for driving a plasma display panel that includes a plurality of address electrodes, a plurality of scan electrodes and sustain electrodes alternately arranged in pairs, and a panel capacitor formed among the address electrode, the scan electrode and the sustain electrode, the method comprising steps of:
(a) storing energy in a first inductor coupled to one terminal of the panel capacitor and at least one second inductor coupled to the other terminal of the panel capacitor, while the one terminal of the panel capacitor is sustained at a level of a summation of a first voltage and a second voltage and the other terminal of the panel capacitor is sustained at a third voltage;
(b) applying the third voltage to the one terminal of the panel capacitor and the summation of the first voltage and the second voltage to the other terminal of the panel capacitor using the energy stored in the first and second inductors;
(c) sustaining the other terminal of the panel capacitor at the summation of the first and second voltages, and recovering the energy stored in the first inductor and the second inductor through a first capacitor coupled to the other terminal of the panel capacitor and charged to the second voltage and a first power source for supplying the first voltage; and
(d) storing energy in the first inductor and the second inductor, while the one terminal of the panel capacitor is sustained at the third voltage and the other terminal of the panel capacitor is sustained at the summation of the first voltage and the second voltage.
(a) storing energy in a first inductor coupled to one terminal of the panel capacitor and at least one second inductor coupled to the other terminal of the panel capacitor, while the one terminal of the panel capacitor is sustained at a level of a summation of a first voltage and a second voltage and the other terminal of the panel capacitor is sustained at a third voltage;
(b) applying the third voltage to the one terminal of the panel capacitor and the summation of the first voltage and the second voltage to the other terminal of the panel capacitor using the energy stored in the first and second inductors;
(c) sustaining the other terminal of the panel capacitor at the summation of the first and second voltages, and recovering the energy stored in the first inductor and the second inductor through a first capacitor coupled to the other terminal of the panel capacitor and charged to the second voltage and a first power source for supplying the first voltage; and
(d) storing energy in the first inductor and the second inductor, while the one terminal of the panel capacitor is sustained at the third voltage and the other terminal of the panel capacitor is sustained at the summation of the first voltage and the second voltage.
2. The method of claim 1, further comprising steps of:
(e) using the energy stored in the first inductor and the second inductor so as to apply the summation of the first voltage and the second voltage to the one terminal of the panel capacitor and the third voltage to the other terminal of the panel capacitor; and
(f) sustaining the one terminal of the panel capacitor at the summation of the first and second voltages, and recovering the energy stored in the first and second inductors through a second capacitor coupled to the one terminal of the panel capacitor and charged to the second voltage and the first power source.
(e) using the energy stored in the first inductor and the second inductor so as to apply the summation of the first voltage and the second voltage to the one terminal of the panel capacitor and the third voltage to the other terminal of the panel capacitor; and
(f) sustaining the one terminal of the panel capacitor at the summation of the first and second voltages, and recovering the energy stored in the first and second inductors through a second capacitor coupled to the one terminal of the panel capacitor and charged to the second voltage and the first power source.
3. The method of claim 2, wherein each of the step (a) and the step (f) further comprise a step of:
charging the first capacitor with the second voltage, and
wherein each of the step (c) and the step (d) further comprise a step of:
charging the second panel capacitor with the second voltage.
charging the first capacitor with the second voltage, and
wherein each of the step (c) and the step (d) further comprise a step of:
charging the second panel capacitor with the second voltage.
4. The method of claim 3, further comprising the step of repeating steps (a) through (f).