Antioxidative properties of galantamine on neuronal damage induced by hydrogen peroxide in SK-N-SH cells.

Research paper by Miezan J M MJ Ezoulin, Jean-Edouard JE Ombetta, Hélène H Dutertre-Catella, Jean-Michel JM Warnet, France F Massicot

Indexed on: 15 Jan '08Published on: 15 Jan '08Published in: NeuroToxicology


Galantamine, an acetylcholinesterase inhibitor used to enhance memory in AD patients by acetylcholinesterase inhibition, has been tested for its protective properties on an in vitro model of H(2)O(2)-induced oxidative stress. SK-N-SH cells treated with H(2)O(2) for 2h showed an increase in ROS production (54%) and in NO production (52%) together with a marked reduction of the mitochondrial membrane potential (19%). These features, typical of the oxidative injury that accompanies AD, were partly recovered by galantamine. Galantamine reduced the release of reactive oxygen species (up to 50%) and prevented loss in mitochondrial activity. When SK-N-SH cells were treated with H(2)O(2) for 24h, nitrite generation was increased by twice compared with 2h. Galantamine treatment resulted in a significant inhibition of H(2)O(2)-induced nitrite generation whatever the concentration tested with a return to control values. Galantamine also concentration-dependently inhibited AChE activity (28-88%) in H(2)O(2)-SK-N-SH cells after 24h. This drug, which facilitates cholinergic neurotransmission, is also neuroprotective by lowering oxidative injury. Our study provides a better understanding of the mechanisms of protection of this acetylcholinesterase inhibitor which also has antioxidative properties.