Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images.

Research paper by Liang L Sun, Wei W Shao, Daoqiang D Zhang, Mingxia M Liu

Indexed on: 05 Jan '20Published on: 04 Jan '20Published in: IEEE transactions on medical imaging


Brain region-of-interest (ROI) segmentation based on structural magnetic resonance imaging (MRI) scans is an essential step for many computer-aid medical image analysis applications. Due to low intensity contrast around ROI boundary and large inter-subject variance, it has been remaining a challenging task to effectively segment brain ROIs from structural MR images. Even though several deep learning methods for brain MR image segmentation have been developed, most of them do not incorporate shape priors to take advantage of the regularity of brain structures, thus leading to sub-optimal performance. To address this issue, we propose an anatomical attention guided deep learning framework for brain ROI segmentation of structural MR images, containing two subnetworks. The first one is a segmentation subnetwork, used to simultaneously extract discriminative image representation and segment ROIs for each input MR image. The second one is an anatomical attention subnetwork, designed to capture the anatomical structure information of the brain from a set of labeled atlases. To utilize the anatomical attention knowledge learned from atlases, we develop an anatomical gate architecture to fuse feature maps derived from a set of atlas label maps and those from the to-be-segmented image for brain ROI segmentation. In this way, the anatomical prior learned from atlases can be explicitly employed to guide the segmentation process for performance improvement. Within this framework, we develop two anatomical attention guided segmentation models, denoted as anatomical gated fully convolutional network (AG-FCN) and anatomical gated U-Net (AG-UNet), respectively. Experimental results on both ADNI and LONI-LPBA40 datasets suggest that the proposed AG-FCN and AG-UNet methods achieve superior performance in ROI segmentation of brain MR images, compared with several state-of-the-art methods.