Quantcast

An innovative navigation scheme for Mars entry using dynamic pressure measurement

Research paper by JianfengDengabc, AiGaoabc, HuaZongd, PingyuanCuiabc

Indexed on: 10 Nov '17Published on: 01 Nov '17Published in: Advances in Space Research



Abstract

Complete observability of dynamic system is a major concern of navigation in Mars precision landing exploration missions. It is demonstrated that, however, the current measurements used for navigation during Mars entry cannot guarantee the complete observability of the dynamic system. This paper proposes an integrated navigation scheme for Mars entry phase using the dynamic pressure and accelerations from inertial measurement unit (IMU). The dynamic pressure derived from the Mars Entry Atmospheric Data System (MEADS), and the triaxle accelerations from IMU are integrated in a filter as navigation measurements to increase the dynamic system observability and perform state estimation on-board. Afterward, the perturbation of the dynamic caused by parameter uncertainties is built. In order to address the impact of perturbation on state estimation, an adaptive estimator based on modified mixture-of-expert framework is given. Numerical simulation results demonstrate that the proposed integrated navigation scheme can ensure the complete observability of the dynamic system, and the state estimation are converged with entry time after the dynamic pressure has built up.