Quantcast

An infinite genus mapping class group and stable cohomology

Research paper by Louis Funar, Christophe Kapoudjian

Indexed on: 10 Dec '08Published on: 10 Dec '08Published in: Mathematics - Geometric Topology



Abstract

We exhibit a finitely generated group $\M$ whose rational homology is isomorphic to the rational stable homology of the mapping class group. It is defined as a mapping class group associated to a surface $\su$ of infinite genus, and contains all the pure mapping class groups of compact surfaces of genus $g$ with $n$ boundary components, for any $g\geq 0$ and $n>0$. We construct a representation of $\M$ into the restricted symplectic group ${\rm Sp_{res}}({\cal H}_r)$ of the real Hilbert space generated by the homology classes of non-separating circles on $\su$, which generalizes the classical symplectic representation of the mapping class groups. Moreover, we show that the first universal Chern class in $H^2(\M,\Z)$ is the pull-back of the Pressley-Segal class on the restricted linear group ${\rm GL_{res}}({\cal H})$ via the inclusion ${\rm Sp_{res}}({\cal H}_r)\subset {\rm GL_{res}}({\cal H})$.