Quantcast

An electrochemical investigation of intermediates and processes involved in the catalytic reduction of dinitrogen by [HIPTN3N]Mo (HIPTN3N = (3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2)3N).

Research paper by Thiruvengadam T Munisamy, Richard R RR Schrock

Indexed on: 28 Oct '11Published on: 28 Oct '11Published in: Dalton Transactions



Abstract

The redox properties of [HIPTN(3)N]Mo complexes (where HIPTN(3)N = (3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)NCH(2)CH(2))(3)N) involved in the catalytic dinitrogen reduction cycle were studied using cyclic voltammetry in fluorobenzene with Bu(4)NPF(6) as the electrolyte. MoN(2) (Mo = [HIPTN(3)N]Mo, E(1/2) = -1.96 V vs. Fc(+)/Fc at a Pt electrode), Mo≡N (E(1/2) = -2.68 V vs. Fc(+)/Fc (Pt)), and [Mo(NH(3))]BAr'(4) (Ar' = 3,5-(CF(3))(2)C(6)H(3), E(1/2) = -1.53 V vs. Fc(+)/Fc (Pt)) each undergo a chemically reversible one-electron reduction, while [Mo=NNH(2)]BAr'(4) (E(1/2) = -1.50 V vs. Fc(+)/Fc (Pt)) and [Mo=NH]BAr'(4) (E(1/2) = -1.26 V vs. Fc(+)/Fc (Pt)) each undergo a one-electron reduction with partial chemical reversibility. The acid employed in the catalytic reduction, [2,4,6-collidinium]BAr'(4), reduces irreversibly at -1.11 V vs. Fc(+)/Fc at Pt and at -2.10 V vs. Fc(+)/Fc at a glassy carbon electrode. The reduction peak potentials of the Mo complexes shift in the presence of acids. For example, the reduction peak for MoN(2) in the presence of [2,4,6-collidinium]BAr'(4) at a glassy carbon electrode shifts positively by 130 mV. The shift in reduction potential is explained in terms of reversible hydrogen bonding and/or protonation at a nitrogen site in Mo complexes. The significance of productive and unproductive proton-coupled electron transfer reactions in the catalytic dinitrogen reduction cycle is discussed.