Quantcast

Amalgamated Products of Ore and Quadratic Extensions of Rings

Research paper by Garrett Johnson

Indexed on: 07 Mar '12Published on: 07 Mar '12Published in: Mathematics - Rings and Algebras



Abstract

We study the ideal theory of amalgamated products of Ore and quadratic extensions over a base ring R. We prove an analogue of the Hilbert Basis theorem for an amalgamated product Q of quadratic extensions and determine conditions for when the one-sided ideals of Q are principal or doubly-generated. We also determine conditions that make Q a principal ideal ring. Finally, we show that the double affine Hecke algebra $H_{q,t}$ associated to the general linear group GL_2(k) (here, k is a field with characteristic not 2) is an amalgamated product of quadratic extensions over a three-dimensional quantum torus and give an explicit isomorphism. In this case, it follows that $H_{q,t}$ is a noetherian ring.