Quantcast

Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation

Research paper by Le Van So, N. Morcos, M. Zaw, P. Pellegrini, I. Greguric

Indexed on: 17 Apr '08Published on: 17 Apr '08Published in: Journal of Radioanalytical and Nuclear Chemistry



Abstract

The conventional multi-column solid phase extraction (SPE) chromatography technique using di-(2-ethylhexyl)orthophosphoric acid (HDEHP) impregnated OASIS-HLB sorbent based SPE resins (OASIS-HDEHP) was developed for the separation of no-carrier added (n.c.a) 177Lu from the bulk quantity of ytterbium target. This technique exploited the large variation of lutetium metal ion distribution coefficients in the varying acidity of the HCl solution-OASIS-HDEHP resin systems for the consecutive loading-eluting cycles performed on different columns. The production batches of several hundred mCi n.c.a 177Lu radioisotope separated from 50 mg Yb target activated in a nuclear reactor of medium neutron flux (Φ = 5·1013 n·cm−2·s−1) were successfully performed using the above mentioned separation technique. With the target irradiation in a reactor of thermal neutron flux Φ = 2·1014 n·cm−2·s−1 or the parallel run of several separation units, many Ci-s of n.c.a 177Lu can be profitably produced. The OASIS-HDEHP resin based multi-column SPE chromatography technique makes the separation process simple and economic and offers an automation capability for operation in highly radioactive hazardous environments.