Adipose tissue gene expression in obese dogs after weight loss.

Research paper by V V Leray, S S Serisier, S S Khosniat, L L Martin, H H Dumon, P P Nguyen

Indexed on: 15 May '08Published on: 15 May '08Published in: Journal of Animal Physiology and Animal Nutrition


Body weight (BW) mainly depends on a balance between fat storage (lipogenesis) and fat mobilization (lipolysis) in adipocytes. BW changes play a role in insulin resistance (IR), the inability of insulin target tissue to respond to physiological levels of insulin. This results in inhibition of lipogenesis and stimulation of lipolysis. Weight gain leads to IR whereas, weight loss improves insulin sensitivity (IS). The aim of this study was to evaluate the effect of weight loss and recovery of IS on the expression of genes involved in lipogenesis and lipolysis in weight losing dogs. Gene expression was studied in both subcutaneous and visceral adipose tissue. Obese dogs received a hypoenergetic low fat high protein diet (0.6 x NRC recommendation). Before and after weight loss, IS was assessed using the euglycaemic hyperinsulinaemic clamp. Gene expression of IRS-2, SREBP, intracellular insulin effectors, ACC, FAS, FABP, ADRP, PEPCK, lipogenesis key proteins, perilipin and HSL, lipolysis key proteins were quantified using real-time RT-PCR in subcutaneous and visceral fat. BW decreased from 15.2 +/- 0.5 to 11.4 +/- 0.4 kg (p < 0.05) over 78 +/- 8 days. When obese, dogs were insulin resistant. After weight loss, IS was improved. In the subcutaneous adipose tissue, the expression of only the IRS-2 was increased. In the visceral adipose tissue, the expression of the genes involved in the lipogenesis was decreased whereas one of the genes implied in the lipolysis did not change. The expression profile of genes involved in lipid metabolism, as measured after weight loss, is indicative for a lower lipogenesis after weight loss than in obese dogs. Our results also confirm dramatic differences in the lipid metabolism of visceral and subcutaneous fat. They should be completed by comparing gene expression during weight losing and normal weight steady state.