Quantcast

Adaptation of the visual system

Research paper by A. L. Byzov, L. P. Kuznetsova

Indexed on: 01 Jul '69Published on: 01 Jul '69Published in: Neurophysiology



Abstract

We recorded the total pulse response of the optic nerve in frogs to varying degrees of increase and decrease of light from the original adapting level. On the basis of these data, we plotted curves of dependence of the magnitude of response on the logarithm of relative value of increase and decrease of light (the amplitude characteristic — AC). The AC is steepest in the zone of adapting background and sloped on either side of it. It follows that under stationary conditions of illumination, the eye is capable of finely differentiating light intensity only within a narrow range (one logarithmic unit). After adaptation to a new level of illumination, the AC shifts along the scale of light intensity in such a way that the steepest portion corresponds to the adapting brightness. Increase in steepness of the AC occurs precisely during the process of adaptation. The contrast sensitivity of the human visual system is greatest near the adapting level and declines on either side of it. It follows that in man steepness of the visual system AC is greatest in the zone of the adapting background. Both increase and decrease of intensity of the adapting background are accompanied by a decline of contrast sensitivity, which rises again during the process of adaptation to a new level. Thanks to adaptive shift of the steep portion of the AC along the scale of light intensity, a visual system having a high contrast sensitivity only within a narrow "working" range is capable of finely differentiating light intensity in significantly changing conditions of illumination.