Quantcast

Acute kidney injury in the rat causes cardiac remodelling and increases angiotensin-converting enzyme 2 expression.

Research paper by L L Burchill, E E Velkoska, R G RG Dean, R A RA Lew, A I AI Smith, V V Levidiotis, L M LM Burrell

Indexed on: 29 Jan '08Published on: 29 Jan '08Published in: Experimental Physiology



Abstract

Patients with kidney failure are at high risk of a cardiac death and frequently develop left ventricular hypertrophy (LVH). The mechanisms involved in the cardiac structural changes that occur in kidney failure are yet to be fully delineated. Angiotensin-converting enzyme (ACE) 2 is a newly described enzyme that is expressed in the heart and plays an important role in cardiac function. This study assessed whether ACE2 plays a role in the cardiac remodelling that occurs in experimental acute kidney injury (AKI). Sprague-Dawley rats had sham (control) or subtotal nephrectomy surgery (STNx). Control rats received vehicle (n = 10), and STNx rats received the ACE inhibitor (ACEi) ramipril, 1 mg kg(-1) day(-1) (n = 15) or vehicle (n = 13) orally for 10 days after surgery. Rats with AKI had polyuria (P < 0.001), proteinuria (P < 0.001) and hypertension (P < 0.001). Cardiac structural changes were present and characterized by LVH (P < 0.001), fibrosis (P < 0.001) and increased cardiac brain natriuretic peptide (BNP) mRNA (P < 0.01). These changes occurred in association with a significant increase in cardiac ACE2 gene expression (P < 0.01) and ACE2 activity (P < 0.05). Ramipril decreased blood pressure (P < 0.001), LVH (P < 0.001), fibrosis (P < 0.01) and BNP mRNA (P < 0.01). These changes occurred in association with inhibition of cardiac ACE (P < 0.05) and a reduction in cardiac ACE2 activity (P < 0.01). These data suggest that AKI, even at 10 days, promotes cardiac injury that is characterized by hypertrophy, fibrosis and increased cardiac ACE2. Angiotensin-converting enzyme 2, by promoting the production of the antifibrotic peptide angiotensin(1-7), may have a cardioprotective role in AKI, particularly since amelioration of adverse cardiac effects with ACE inhibition was associated with normalization of cardiac ACE2 activity.