Acetylation regulates protein stability and DNA-binding ability of HilD to modulate Salmonella Typhimurium virulence.

Research paper by Yu Y Sang, Jie J Ren, Ran R Qin, Shuting S Liu, Zhongli Z Cui, Sen S Cheng, Xiaoyun X Liu, Jie J Lu, Jing J Tao, Yu-Feng YF Yao

Indexed on: 23 Mar '17Published on: 23 Mar '17Published in: The Journal of infectious diseases


HilD, a dominant regulator of Salmonella pathogenicity island 1 (SPI-1), can be acetylated by acetyltransferase Pat in Salmonella Typhimurium, and the acetylation is beneficial to its stability. However, the underlying mechanism of HilD stability regulated by acetylation is not clear. We show here that lysine 297 (K297) located in the helix-turn-helix motif, can be acetylated by Pat. Acetylation of K297 increases HilD stability, but reduces its DNA-binding affinity. In turn, the deacetylated K297 enhances the DNA-binding ability, but decreases HilD stability. Under SPI-1 inducing condition, the acetylation level of K297 is down-regulated. The acetylated K297 (mimicked by glutamine substitution) causes attenuated invasion in HeLa cells as well as impaired virulence in mouse model compared with the deacetylated K297 (mimicked by arginine substitution), suggesting that deacetylation of K297 is essential for Salmonella virulence. These findings demonstrate that the acetylation of K297 can regulate both protein stability and DNA-binding ability. This regulation mediated by acetylation not only degrades redundant HilD to keep a moderate protein level to facilitate S. Typhimurium growth but also maintains an appropriate DNA-binding activity of HilD to ensure bacterial pathogenicity.