Quantcast

A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces

Research paper by Karoline Disser, Martin Meyries, Joachim Rehberg

Indexed on: 29 Jan '15Published on: 29 Jan '15Published in: Mathematics - Analysis of PDEs



Abstract

In this paper we consider scalar parabolic equations in a general non-smooth setting with emphasis on mixed interface and boundary conditions. In particular, we allow for dynamics and diffusion on a Lipschitz interface and on the boundary, where diffusion coefficients are only assumed to be bounded, measurable and positive semidefinite. In the bulk, we additionally take into account diffusion coefficients which may degenerate towards a Lipschitz surface. For this problem class, we introduce a unified functional analytic framework based on sesquilinear forms and show maximal regularity for the corresponding abstract Cauchy problem.