Quantcast

A simple piston problem in one dimension

Research paper by Paul Wright

Indexed on: 04 Aug '06Published on: 04 Aug '06Published in: Mathematics - Dynamical Systems



Abstract

We study a heavy piston that separates finitely many ideal gas particles moving inside a one-dimensional gas chamber. Using averaging techniques, we prove precise rates of convergence of the actual motions of the piston to its averaged behavior. The convergence is uniform over all initial conditions in a compact set. The results extend earlier work by Sinai and Neishtadt, who determined that the averaged behavior is periodic oscillation. In addition, we investigate the piston system when the particle interactions have been smoothed. The convergence to the averaged behavior again takes place uniformly, both over initial conditions and over the amount of smoothing.