A Remark on the Growth of the Denominators of Convergents

Research paper by Jun Wu

Indexed on: 10 Feb '06Published on: 10 Feb '06Published in: Monatshefte für Mathematik


For \({\rm log}\frac{1+\sqrt{5}}{2}\leq \lambda_\ast \leq \lambda^\ast < \infty\), let E(λ*, λ*) be the set \( \left\{x\in [0,1):\ \mathop{\lim\inf}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda_{\ast}, \mathop{\lim\sup}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda^{\ast}\right\}.\)It has been proved in [1] and [3] that E(λ*, λ*) is an uncountable set. In the present paper, we strengthen this result by showing that \(\dim E(\lambda_{\ast}, \lambda^{\ast}) \ge \frac{\lambda_{\ast} -\log \frac{1+\sqrt{5}}{2}}{2\lambda^{\ast}}\)where dim denotes the Hausdorff dimension.