Quantcast

A reexamination of the crop water stress index

Research paper by Ray D. Jackson, William P. Kustas, Bhaskar J. Choudhury

Indexed on: 01 Oct '88Published on: 01 Oct '88Published in: Irrigation Science



Abstract

Hand-held infrared radiometers, developed during the past decade, have extended the measurement of plant canopy temperatures from individual leaves to entire plant canopies. Canopy temperatures are determined by the water status of the plants and by ambient meteorological conditions. The crop water stress index (CWSI) combines these factors and yields a measure of plant water stress. Two forms of the index have been proposed, an empirical approach as reported by Idso et al. (1981), and a theoretical approach reported by Jackson et al. (1981). Because it is simple and requires only three variables to be measured, the empirical approach has received much attention in the literature. It has, however received some criticism concerning its inability to account for temperature changes due to radiation and windspeed. The theoretical method is more complicated in that it requires these two additional variables to be measured, and the evaluation of an aerodynamic resistance, but it will account for differences in radiation and windspeed. This report reexamines the theoretical approach and proposes a method for estimating an aerodynamic resistance applicable to a plant canopy. A brief history of plant temperature measurements is given and the theoretical basis for the CWSI reviewed.