Quantcast

A rational inference approach to group and individual-level sentence comprehension performance in aphasia.

Research paper by Tessa T Warren, Michael Walsh MW Dickey, Teljer L TL Liburd

Indexed on: 10 Apr '17Published on: 10 Apr '17Published in: Cortex



Abstract

The rational inference, or noisy channel, account of language comprehension predicts that comprehenders are sensitive to the probabilities of different interpretations for a given sentence and adapt as these probabilities change (Gibson, Bergen & Piantadosi, 2013). This account provides an important new perspective on aphasic sentence comprehension: aphasia may increase the likelihood of sentence distortion, leading people with aphasia (PWA) to rely more on the prior probability of an interpretation and less on the form or structure of the sentence (Gibson, Sandberg, Fedorenko, Bergen & Kiran, 2015). We report the results of a sentence-picture matching experiment that tested the predictions of the rational inference account and other current models of aphasic sentence comprehension across a variety of sentence structures. Consistent with the rational inference account, PWA showed similar sensitivity to the probability of particular kinds of form distortions as age-matched controls, yet overall their interpretations relied more on prior probability and less on sentence form. As predicted by rational inference, but not by other models of sentence comprehension in aphasia, PWA's interpretations were more faithful to the form for active and passive sentences than for direct object and prepositional object sentences. However contra rational inference, there was no evidence that individual PWA's severity of syntactic or semantic impairment predicted their sensitivity to form versus the prior probability of a sentence, as cued by semantics. These findings confirm and extend previous findings that suggest the rational inference account holds promise for explaining aphasic and neurotypical comprehension, but they also raise new challenges for the account.