Quantcast

A Probabilistic Design Method for Fatigue Life of Metallic Component

Research paper by Danial Faghihi, Subhasis Sarkar, Mehdi Naderi, Lloyd Hackel, Nagaraja Iyyer

Indexed on: 22 Mar '17Published on: 22 Mar '17Published in: arXiv - Computer Science - Computational Engineering; Finance; and Science



Abstract

In the present study, a general probabilistic design framework is developed for cyclic fatigue life prediction of metallic hardware using methods that address uncertainty in experimental data and computational model. The methodology involves (i) data from fatigue tests conducted on coupons of Ti6Al4V material; (ii) continuum damage mechanics based material constitutive models to simulate cyclic fatigue behavior of material; (iii) variance-based global sensitivity analysis; (iv) Bayesian framework for model calibration and uncertainty quantification; and (v) computational life prediction and probabilistic design decision making under uncertainty. The outcomes of computational analyses using the experimental data prove the feasibility of the probabilistic design methods for model calibration in presence of incomplete and noisy data. Moreover, using probabilistic design methods result in assessment of reliability of fatigue life predicted by computational models.