A peroxisome proliferator-activated receptor-δ agonist provides neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease.

Research paper by H L HL Martin, R B RB Mounsey, K K Sathe, S S Mustafa, M C MC Nelson, R M RM Evans, P P Teismann

Indexed on: 19 Mar '13Published on: 19 Mar '13Published in: Neuroscience


Peroxisome proliferator-activated receptor (PPAR)-γ and PPARα have shown neuroprotective effects in models of Parkinson's disease (PD). The role of the third, more ubiquitous isoform PPARδ has not been fully explored. This study investigated the role of PPARδ in PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to model the dopaminergic neurodegeneration of PD. In vitro administration of the PPARδ antagonist GSK0660 (1 μM) increased the detrimental effect of 1-methyl-4-phenylpyridinium iodide (MPP⁺) on cell viability, which was reversed by co-treatment with agonist GW0742 (1 μM). GW0742 alone did not affect MPP⁺ toxicity. PPARδ was expressed in the nucleus of dopaminergic neurons and in astrocytes. Striatal PPARδ levels were increased (over two-fold) immediately after MPTP treatment (30 mg/kg for 5 consecutive days) compared to saline-treated mice. PPARδ heterozygous mice were not protected against MPTP toxicity. Intra-striatal infusion of GW0742 (84 μg/day) reduced the MPTP-induced loss of dopaminergic neurons (5036±195) when compared to vehicle-infused mice (3953±460). These results indicate that agonism of PPARδ provides protection against MPTP toxicity, in agreement with the effects of other PPAR agonists.