Quantcast

A model for the origin of ilmenite in kimberlite and diamond: implications for the genesis of the discrete nodule (megacryst) suite

Research paper by A. E. Moore

Indexed on: 01 Feb '87Published on: 01 Feb '87Published in: Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie



Abstract

Mineralogical and chemical relationships indicate that the majority of ilmenites recovered from Group I kimberlites crystallized directly from the kimberlite magma in two contrasting P-T regimes: Ilmenites of the discrete nodule association formed in pegmatitic veins and apophyses surrounding the kimberlite magma at depth. Compositional ranges of the discrete nodule assemblage reflect essentially isobaric crystallization across the thermal aureole about the magma reservoir. Early crystallization of high pressure Cr-rich phases (garnet, clinopyroxene and possibly spinel) could result in later forming megacryst ilmenites being Cr-poor. During ascent of the kimberlite magma (essentially identical to the liquid injected into the pegmatitic veins), crystallization of garnet and clinopyroxene would be inhibited as a result of the expansion of the olivine phase field. The magma would not undergo Crdepletion, with the result that later crystallizing (ground-mass) ilmenites would be Cr-rich relative to associated ilmenite megacrysts.Rare ilmenite inclusions in diamonds show chemical affinities with those of the discrete nodule suite. It is proposed that large Type IIa diamonds may be late-crystallizing members of the discrete nodule assemblage. They are in other words related to the kimberlite event itself, and would represent a third diamond paragenesis, distinctly younger than those related to peridotites and eclogites.The mode of formation of rare MARID suite and metasomatized mantle xenoliths is not clearly understood, although mineralogical and chemical evidence point to a direct or indirect link to the host kimberlite.