A matter of choice: the establishment of sister chromatid cohesion.

Research paper by Frank F Uhlmann

Indexed on: 12 Sep '09Published on: 12 Sep '09Published in: EMBO reports


Sister chromatid cohesion is the basis for the recognition of chromosomal DNA replication products for their bipolar segregation in mitosis. Fundamental to sister chromatid cohesion is the ring-shaped cohesin complex, which is loaded onto chromosomes long before the initiation of DNA replication and is thought to hold replicated sister chromatids together by topological embrace. What happens to cohesin when the replication fork approaches, and how cohesin recognizes newly synthesized sister chromatids, is poorly understood. The characterization of a number of cohesion establishment factors has begun to provide hints as to the reactions involved. Cohesin is a member of the evolutionarily conserved family of Smc subunit-based protein complexes that contribute to many aspects of chromosome biology by mediating long-range DNA interactions. I propose that the establishment of cohesion equates to the selective stabilization of those cohesin-mediated DNA interactions that link sister chromatids in the wake of replication forks.