# A fractional Kirchhoff system with singular nonlinearities

Research paper by **K. Saoudi**

Indexed on: **10 Oct '18**Published on: **03 Oct '18**Published in: **Analysis and Mathematical Physics**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

Abstract
In this work we consider the following fractional Kirchhoff equations with singular nonlinearity:
$$\begin{aligned} \left\{ \begin{array}{ll} M\Big ( \int _{\mathbb {R}^{2N}}\frac{ u(x)-u(y) ^{2}}{ x-y ^{N+2s}}dx dy\Big )(-\Delta )^s u = \lambda a(x) u ^{q-2}u +\frac{1-\alpha }{2-\alpha -\beta } c(x) u ^{-\alpha } v ^{1-\beta }, \quad \text {in }\Omega ,\\ M\Big ( \int _{\mathbb {R}^{2N}}\frac{ v(x)-v(y) ^{2}}{ x-y ^{N+2s}}dx dy\Big ) (-\Delta )^s v= \mu b(x) v ^{q-2}v +\frac{1-\beta }{2-\alpha -\beta } c(x) u ^{1-\alpha } v ^{-\beta }, \quad \text {in }\Omega ,\\ u=v = 0,\;\; \text{ in } \,\mathbb {R}^N\setminus \Omega , \end{array} \right. \end{aligned}$$
where
\(\Omega \)
is a bounded domain in
\(\mathbb {R}^n\)
with smooth boundary
\(\partial \Omega \)
,
\(N> 2s\)
,
\(s \in (0,1)\)
,
\(0<\alpha<1,\;0<\beta <1,\)
\(0<\alpha +\beta<2\theta<q<2^*_s,\)
\(2^*_s=\frac{2N}{N-2s}\)
is the fractional Sobolev exponent,
\(\lambda , \mu \)
are two parameters,
\(a,\, b, \,c \in C({\overline{\Omega }})\)
are non-negative weight functions, M is a continuous function, given by
\(M(t)=k+lt^{\theta -1}\)
\(k>0,\,l,\,\theta \ge 1,\)
and
\((-\Delta )^s\)
is the fractional Laplacien operator. We use the Nehari manifold approach and some variational techniques in order to show the existence and multiplicity of positive solutions of the above problem with respect to the parameter
\(\lambda \)
and
\(\mu \)
.