A diffusion-based approach for modelling crack tip behaviour under fatigue-oxidation conditions

Research paper by R. J. Kashinga, L. G. Zhao, V. V. Silberschmidt, R. Jiang, P. A. S. Reed

Indexed on: 07 Sep '18Published on: 06 Sep '18Published in: International Journal of Fracture


Modelling of crack tip behaviour was carried out for a nickel-based superalloy subjected to high temperature fatigue in a vacuum and air. In a vacuum, crack growth was entirely due to mechanical deformation and thus it was sufficient to use accumulated plastic strain as a criterion. To study the strong effect of oxidation in air, a diffusion-based approach was applied to investigate the full interaction between fatigue and oxygen penetration at a crack tip. Penetration of oxygen into the crack tip induced a local compressive stress due to dilatation effect. An increase in stress intensity factor range or dwell times imposed at peak loads resulted in enhanced accumulation of oxygen at the crack tip. A crack growth criterion based on accumulated levels of oxygen and plastic strain at the crack tip was subsequently developed to predict the crack growth rate under fatigue-oxidation conditions. The predicted crack-growth behaviour compared well with experimental results.