3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices

Research paper by Suprem R. Das, Qiong Nian, Allison A. Cargill, John A. Hondred, Shaowei Ding, Mojib Saei, Gary J. Cheng, Jonathan C. Claussen

Indexed on: 13 Aug '16Published on: 12 Jul '16Published in: Nanoscale


Emerging research on printed and flexible graphene-based electronics is beginning to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors. However, post-print annealing/reduction processes that are necessary to increase the electrical conductivity of the printed graphene degrade sensitive substrates (e.g., paper) and are whole substrate processes that are unable to selectively anneal/reduce only the printed graphene—leaving sensitive device components exposed to damaging heat or chemicals. Herein a pulsed laser process is introduced that can selectively irradiate inkjet printed reduced graphene oxide (RGO) and subsequently improve the electrical conductivity (Rsheet ∼0.7 kΩ □−1) of printed graphene above previously published reports. Furthermore, the laser process is capable of developing 3D petal-like graphene nanostructures from 2D planar printed graphene. These visible morphological changes display favorable electrochemical sensing characteristics—ferricyanide cyclic voltammetry with a redox peak separation (ΔEp) ≈ 0.7 V as well as hydrogen peroxide (H2O2) amperometry with a sensitivity of 3.32 μA mM−1 and a response time of <5 s. Thus this work paves the way for not only paper-based electronics with graphene circuits, it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells, and theranostic devices.

Graphical abstract 10.1039/C6NR04310K.gif