13C-selective two-stage IRMPD of mixtures of CHClF2 and HI

Research paper by P. H. Ma, K. Sugita, S. Arai

Indexed on: 01 May '90Published on: 01 May '90Published in: Applied Physics B


The 13C-selective infrared multiple-photon decomposition (IRMPD) of mixtures of CHClF2 and HI was examined in collimated and focused beam geometries using a CO2TEA laser. The carbon-containing products were CH2F2 and CHF2I. The former product showed remarkably high 13C atom concentrations beyond 95% under selected experimental conditions, while the latter contained 25% or less. The observed results can be explained satisfactorily in terms of the consecutive two-stage IRMPD process occurring in a single irradiation procedure, where the first-stage IRMPD of natural CHClF2 produces 13C-enriched CHF2I via the insertion of the initial decomposition fragment CF2 into HI, and the second stage is the subsequent 13C-selective IRMPD of the CHF2I to form a CHF2 radical and an I atom. The CHF2 radical reacts with HI to form CH2F2. Decomposition probabilities of 12CHClF2 and 13CHClF2 were measured as a function of laser fluence to optimize enrichment conditions. Furthermore, partial decomposition probabilities or relative production yields were measured as functions of laser line, pressure of HI, and pressure of CHClF2. Both stages showed high 13C selectivities in the irradiation with the laser radiation around 1040 cm−1 and at fluences below 4 J cm−2. This mixture is one of the most promising chemical systems for the production of highly enriched 13C.